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Abstract. Modification rules are presented for finite dimensional graded tensor representa- 
tions of OSp( M /  N ) .  With the representations specified by Young supertableaux these 
rules relate non-standard supertableaux to standard supertableaux via the removal of 
continuous boundary hooks. All typical tensor representations are treated together with 
atypical representations which satisfy up to two atypicality conditions. 

1. Introduction 

Young tableau and Schur function techniques provide a useful and elegant description 
of many properties related to finite dimensional representations of semisimple Lie 
algebras. The extension of these techniques to Lie superalgebras (Kac 1977, 1978) 
was first made by Dondi and Jarvis (1980, 1981) to provide branching rules, Kronecker 
products and dimensions for covariant and contravariant representations of U( M /  N) 
and S U ( M / N ) .  Since this time a number of papers have appeared (Balantekin and 
Bars 1981, 1982, Bars er a1 1983, Delduc and Gourdin 1984, Morel et a1 1984, Hurni 
1984, Gourdin 1984a, b) which seek to educe properties of finite dimensional rep- 
resentations of Lie superalgebras in terms of supertableaux. Of particular relevance 
to the work presented here are the results of King (1983), which provide the branching 
rules 

U(M/N) J O S P ( M / N )  { A )  3. [A/OI (1.1) 
OSP(M/N)  J O ( M )  x SP(N) [ A I  .1 c [ S / O I ( Z )  (1.2) 

i 

where 5 is any partition. 

rule for evaluating Kronecker products in U(M) carries over to U(M/N), i.e. 
Dondi and Jarvis (1981) also pointed out that the usual Littlewood-Richardson 

{ A } X b } = { A .  d = C  m ; , { v }  (1.3) 

where { A }  may be regarded as a U( M ) ,  U( M /  N) or SU( M /  N) character. King (1983) 
has noted that the results of Newel1 (1951) and Littlewood (1958) for .evaluating 
Kronecker products of tensor representations in O ( M )  carries over to products of 
tensor representations in OSp( M /  N), i.e. 

[ A I X [ l * l = C [ ( A / S )  * ( P / 5 ) 1  (1.4) 
i 

where [ A ]  may be regarded as an O ( M )  or an OSp(M/N)  character. 
For semisimple Lie algebras a standard Young tableau possesses up to 1 rows, 

where 1 is the rank of the algebra being considered. The 1 row lengths, Ai, i = 1, .  . . , I, 
uniquely label irreducible representations of the algebra. However, when one attempts 
to evaluate Kronecker products of irreducible representations, e.g. as per (1.3) or (1,4), 
non-standard Young tableaux may arise which contain more than 1 rows. Non-standard 

0305-4470/86/030321+ 07$02.50 @ 1986 The Institute of Physics 321 



322 R J Farmer 

tableaux also often arise in the evaluation of branching rules, as for example in ( 1 . 1 ) ,  
which is also the form of the branching U(M) J. O ( M ) .  King (1975) has given a 
comprehensive treatment of branching rules for classical Lie groups using Schur 
function techniques. For the semisimple Lie algebras the character corresponding to 
a non-standard tableau may either vanish or be equal, up to a sign factor, to the 
character corresponding to a standard tableau. The relations between irreducible 
representations labelled by non-standard and standard tableaux are known as 
modiJication rules. Early studies of these rules for the orthogonal and symplectic groups 
were made by Murnaghan (1938) and Newel1 (1951), while in more recent years 
King (197 1 )  has provided a succinct procedure for modifying non-standard tableaux, 
which is applicable to all the classical Lie groups and is somewhat simpler to use than 
earlier results. King's method involves the removal of continuous boundary hooks, 
starting from the last box in the first column. A complete listing of the modification 
rules for the semisimple Lie groups and an accompanying discussion can be found in 
Black et al (1983). 

For the Lie superalgebras U( M / N ) ,  SU( M /  N )  and OSp( M /  N ) ,  non-standard 
supertableaux may arise, as with Lie algebras, in the evaluation of Kronecker products 
(1.3), (1.4) or branching rules, e.g. ( 1 . 1 ) .  In this paper modification rules are provided 
for OSp( M /  N ) .  These rules are in the spirit of King's method, involving the removal 
of continuous boundary hooks and are simple to implement. They are applicable to 
all typical tensor representations of OSp( M /  N )  and atypical tensor representations 
which satisfy up to two atypicality conditions. This covers a large number of cases 
which are likely to be of interest since, as discussed in 0 4, OSp(6/6) and OSp(7/6) 
are the lowest rank algebras for which more than two atypicality conditions can be 
simultaneously satisfied, with the corresponding lowest rank supertableaux being of 
rank 19 and 16 respectively. These rules have been deduced by decomposing partitions 
[ A ] ,  of OSp(M/N) ,  according to the branching rule (1.2), where modifications can 
be carried out using the known results for O ( M )  and Sp(N).  These decompositions 
have been performed with the aid of the group theory computer package SCHUR. 

SCHUR has enabled the examination of a large number of partitions to a maximum 
rank of 25, an otherwise formidable task. 

The following section introduces the notation used here while 00 3 and 4 contain 
the modification rules for typical and atypical supertableaux respectively. 

2. Notation 

For OSp(2m + 1/2n) and OSp(2m/2n) a standard Young supertableau is of the form 
(Farmer and Jarvis 1984) 

where Aj is the number of boxes beyond the nth column in the j th  row, with ja m, 
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and pi is the number of boxes in the ith column, with i s  n. The standard ( m  x n )  
envelope of (2.1) we schematically represent by 

Supertableaux are always required to be regular. The row lengths AJ, j = 1, . . . , m, and 
column lengths p,, i = 1, . . . , n, uniquely label tensor representations of the algebra. 
Under certain conditions these representations are indecomposable and are called 
atypical (Kac 1978). The conditions for atypicality are (Farmer and Jarvis 1984) 

pz + A, + n = i -t j - 1 

pt + n + j +  1 = A J  + M +  i 

(2.2) 

(2.3) 

where l s i s n ;  l < j S m ,  and M = 2 m + 1  for OSp(2m+1/2n)  or M = 2 m  for 
OSp(2m/2n). 

Non-standard supertableaux include boxes outside the standard ( m  x n )  envelope 
(2.1). These 'extra' boxes will be labelled by row lengths, rJ, or column lengths, c, as 
shown below. 

where the row lengths A,  and pJ are taken with reference to (2.1). 

it satisfies any of the conditions (2.2) or (2.3). Otherwise it will be called typical. 

supertableau then it will be discarded. 

A supertableau, whether it be standard or non-standard, will be called atypical if 

In the following sections, if at any stage the modification results in an irregular 

3. Typical supertableaux 

Supertableaux which are typical but non-standard modify in the following way. 

3.1. OSp(Zm+l/Zn) 

(a) If rl 2 c1 the modification rule is 

[ A ] +  [A*] = (-l)'-'[A - h], h = 2 r 1 - 1  (3.1) 
where h is the length of the hook boundary to be removed from the partition ( A )  
starting from the end box in r, and working to the left and down, with ( r +  m )  being 
the row in which the removal ends. 

(b) If c1 2 rl the modification rule is 

[ A ]  + [A'] = (-l)'-'[A - h], h =2c1 - 1 (3.2) 
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OSp(3/2): - j-p ---$ 

3.2. OSp(2m/2n) 

(a) If rI > c1 the modification rule is 

[ A ] + [ A ” ] = ( - l ) ‘ [ A  -h],  h=2r1-2  

and proceed as for OSp(2m + 1/2n) case (a). 
(b) If c, 2 rl the modification rule is 

[ A ]  + [ A ” ]  = (-l)‘-’[A - h], h =2c l  

and proceed as for OSp(2m -t 1/2n) case (b) 
Examples of (3.3) and (3.4) are 

OSp( 4/2) : 

OSp(2/4): 

These results have a natural interpretation in terms of the character formulae of 
King (1984). For a typical, tensor representation with corresponding standard Young 
supertableau [A],  as defined by (2.1), he has noted the following: 

OSp(2m + 1/2n) 

~ Z m + l / 2 n [ ~ I  = ~ 2 m + l / 2 n [ n ~ / ~ I  ~ Z m + i [ f i I  . ~ 2 n + i [ G 1  (3.5) 

~ 2 m / z n [ ~ I  =x2m/2n[nm/AI ~ 2 m [ f i I  ~ 2 n ( b )  (3.6) 
where (A) and ( f i )  are defined by (2.5) and (2.6). A definition of the infinite series of 
s functions A and E can be found in King (1975). 

OSp(2m/2n) 
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If [A’], as defined in (2.4), is a non-standard, typical supertableau then the 
modification rules (3.1)-(3.4) tell us, in the light of (3.5) and (3.6), that 

[ ~ ’ I 2 m + l / 2 n  = inm/  ~ I 2 m + l / * n [ i ’ I 2 m + l [ c 2 ’ I 2 n + l  (3.7) 

and 
[ ~ ’ I 2 m / 2 n  = [ n m / A I 2 m / 2 n [ i ’ 1 2 m ( c 2 ’ ) 2 n  (3.8) 

where if rl > c1 

(if) = ( A I ,  A29 * * * A m - 1 ,  A m )  

(2) = (ell - m, ~2 - m, . . . , P, - m, cl, c2, . . . , c,) 

and if c, rl 

( i f )  = ( A , ,  ~ 2 ,  . . . ,  Am, rl, r2, * * . , r,) 
G’) = (CL,  - m, p 2  - m, . . . , P, - m).  

Thus the modification of a supertableau is essentially a modification of (i’) in O(2m + 1) 
or O(2m) or of ( G ’ )  in 0 ( 2 n  + 1) or Sp(2n).  

4. Atypical supertableaux 

Before presenting the modification rules applicable to atypical, non-standard super- 
tableaux, a few points need to be noted regarding which of the atypicality conditions 
(2.2) and (2.3) can be satisfied if the supertableaux are non-standard and, as we always 
require, regular. 

We first note that under these conditions pt L m + 1, 1 s i s n and A, 3 1, 1 ~j s m. 
Consequently, (2.2) can never be satisfied. 

We next wish to determine which of the conditions (2.3) can be simultaneously 
satisfied. To do this we consider the following two expressions from (2.3) 

po + n +  b + 1 = A b +  M +  a 
pc+ n +  d + 1 = A d  +M+C. 

(4.1) 

(4.2) 
There are only two possibilities which need be examined. 

(i) a 3 c  and b < d  or a > c  and b s d :  

=$Pc 2 Pa 

A b  3 A d .  

From (4.1), (4.2) and (4.3) we obtain 
Ad 3 A b  + ( a  - C )  + ( d  - b)  

which is incompatible with (4.4). 
(i i)  a > c a n d b > d o r a > c a n d b s d :  

(4.3) 
(4.4) 

(4.5) 

*CLc 2 Pa (4.6) 
A d  3 Ab.  (4.7) 

Ad 3 Ab + ( a  - C )  + ( d  - b). (4.8) 

From (4.1), (4.2) and (4.6) we obtain 

However if a = c and b > d (4.8) reduces to A d  = A b  + ( d  - 6)  which is inconsistent 
with (4.7); while if b = d and a > c (4.8) reduces to A d  = A d  + ( a  - c) which is again 
inconsistent. Consequently (4.8) only has consistent solutions for a 7 c and b > d. 
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The above analysis tells us that (4.1) and (4.2) can be simultaneously satisfied iff 
a > c and b > d. We will denote an atypicality condition (2.3) which relates pcLI and A, 
by ( i , j ) .  Thus if a particular (a, b )  is satisfied only those conditions (i, j )  for which 
i >  a and j >  b or i < a and j <  6 may be simultaneously satisfied. The notation 
(i, j )  > ( k ,  I )  will be used for i > k and j > 1. From this we learn that the maximum 
number of atypicality conditions which may be simultaneously realised is the lesser 
of m and n. 

The modification rules for atypical supertableaux are now presented. To make 
their writing more succinct, h ,  will be used to denote a continuous boundary strip 
starting from the end box in column i and finishing at the end box in row j .  

If the supertableau is non-standard and satisfies a single atypicality condition (i, j )  
it modifies in the following way: 

[ A ]  = [A’] + (-l)”~-‘-“([h - h,] - [ A  ” - h,]) (4.9) 

where ( A p )  is obtained from the modification rules of 0 3 and h, is the hook boundary 
to be removed from both ( A )  and ( A ” ) .  Any sign factors attached to [ A ” ]  must be 
carried through forthe last term in (4.9). An example of (4.9) is the following: Osp(5/4), 
where an atypical supertableau satisfies condition F~ = A 2 +  1. 

I I 1 - 1  I I +I I 

If the supertableau is non-standard and satisfies two atypicality conditions ( i , j )  
and (k, I )  with ( i ,  j) < ( k ,  I )  it modifies in the following way: 

[ A ]  = [ A ” ]  -k ( - l ) ” i - ’ - ” ( [A  - hi,] - [ A ”  - h,]) + ( - l ) A 1 - k - ” ( [ A  - h k j ]  - [ A p  - h k l ] )  

( [A - hkl  - hajj - [ A ”  - hkl  - hijl) (4.10) 

where the hook removals in the final term must be performed in the order shown 
reading from left to right. 

An example of (4.10) is the following: OSp(7/4), where an atypical supertableau 
satisfies conditions k ,  = A l  + 4  and p2 = A , + 3 .  

+ ( - ) A, + A ,  - i - k -  1 

U U 

t + Ep m 

These rules show that for atypical supertableaux, which correspond to neither fully 
reducible or irreducible representations, the modification rules take on a substantially 
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different form to those of semisimple Lie algebras. Work is currently in progress to 
generalise these results to include cases where an arbitrary number of atypicality 
conditions are simultaneously satisfied and also to derive the modification rules for 
spinor representations. We are also seeking to educe general proofs for the results 
presented here. 
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